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Natural human immunity to the mycobacteria group, including Mycobacterium tuberculosis,
Bacille Calmette-Guérin (BCG) or nontuberculous mycobacteria (NTM), and/or Salmonella
species, relies on the functional IL-12/23-IFN-g integrity of macrophages (monocyte/
dendritic cell) connecting to T lymphocyte/NK cells. Patients with severe forms of primary
immunodeficiency diseases (PIDs) have more profound immune defects involving this
impaired circuit in patients with severe combined immunodeficiencies (SCID) including
complete DiGeorge syndrome, X-linked hyper IgM syndrome (HIGM) (CD40L mutation),
CD40 deficiency, immunodeficiency with or without anhidrotic ectodermal dysplasia (NEMO
and IKBA mutations), chronic granulomatous disease (CGD) and hyper IgE recurrent infection
syndromes (HIES). The patients with severe PIDs have broader diverse infections rather than
mycobacterial infections. In contrast, patients with an isolated inborn error of the IL-12/23-
IFN-g pathway are exclusively prone to low-virulence mycobacterial infections and nonty-
phoid salmonella infections, known as Mendelian susceptibility to the mycobacterial disease
(MSMD) phenotype. Restricted defective molecules in the circuit, including IFN-gR1, IFN-gR2,
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IL-12p40, IL-12R-b1, STAT-1, NEMO, IKBA and the recently discovered CYBB responsible for
autophagocytic vacuole and proteolysis, and interferon regulatory factor 8 (IRF8) for
dendritic cell immunodeficiency, have been identified in around 60% of patients with the
MSMD phenotype. Among all of the patients with PIDs referred for investigation since
1985, we have identified four cases with the specific defect (IFNRG1 for three and IL12RB
for one), presenting as both BCG-induced diseases and NTM infections, in addition to some
patients with SCID, HIGM, CGD and HIES. Furthermore, manifestations in patients with auto-
antibodies to IFN-g (autoAbs-IFN-g), which is categorized as an anticytokine autoantibody
syndrome, can resemble the relatively persistent MSMD phenotype lacking BCG-induced
diseases.
Copyright ª 2011, Elsevier Taiwan LLC & Formosan Medical Association. All rights reserved.
Introduction

Human natural defense to the mycobacteria group,
including Mycobacterium tuberculosis, Bacille Calmette-
Guerin (BCG) or the nontuberculosis mycobacteria (NTM)
relies on the functional IL-12/23-IFN-g integrity of macro-
phage (monocyte/dendritic cell) connecting T lymphocyte/
NK cells.1 An intact IL-12/23-IFN-g circuit phosphorylates
macrophage intracytoplasmic signal transducers and acti-
vators of transcription-1 (STAT1) to upregulate specific
genes to kill mycobacteria.2,3 Augmenting the circuit, cos-
timulator CD40 signaling enhances macrophage IL-12
production through the phosphorylation of IkB by the acti-
vated IKK complex, which consists of Ikk-a, Ikk-b and Ikk-g
(also called NF-kB essential modulator; NEMO), thereby
releasing NF-kB for a further effective response.4e9

Impaired immunity for HIV-uninfected human suscepti-
bility to mycobacterial infection is mainly orchestrated by
a defective IL-12/23-IFN-g circuit.10 IFN-g is critical and
irreplaceable in this circuit to induce the killing of
mycobacteria.1,10

The clinical description of primary immunodeficiency
diseases (PIDs) contains over 206 diseases for which more
than 110 genetic etiologies have been described, and
provides opportunities for diagnosis and genetic coun-
seling.11,12 An understanding of the pathogenesis of PIDs
has an even greater biological impact on the definition of
host gene function in nature (i.e., in the setting of a natural
ecosystem), a unique added value of studying the human
model.13 Through such knout-out genetic human systems in
nature, we reviewed the effect of impairment of the IL-12/
23-IFN-g circuit on human PIDs in this article, with the aim
of reminding physicians to consider the possible diagnosis of
PIDs in patients with refractory or/and recurrent to myco-
bacterial infections.

Broad predisposition to multiple and
mycobacterial infections

Severe combined immunodeficiency (SCID)

Despite the huge heterogeneity on the molecular level,14

the clinical manifestations of the different SCID forms are
characterized, often before the 3rd month of life,15,16 by
recurrent infections with a protracted course and unex-
pected complications. Before the age of 6 months, patients
with SCIDs develop chronic diarrhea, interstitial pneumonia
and/or therapy-resistant mucocutaneous candidiasis.
Infections with opportunistic pathogens, such as Pneumo-
cystis jiroveci (previously classified as Pneumocystis carinii)
are often present as well as various other opportunistic
pathogens, such as Listeria sp., Salmonella typhi, Toxo-
plasma, Mycobacterium sp., Aspergillus spp, adenovirus,
respiratory syncytial virus (RSV), cytomegalovirus (CMV),
herpes simplex virus (HSV) and Epstein-Barr Virus (EBV). Of
note, the BCG vaccination causes disseminated infections
that may be lethal in SCID patients. Infiltrating and ulcer-
ating lesions at the site of the BCG vaccination and in the
regional lymph nodes, and even systemic propagation with
papular cutaneous lesions, osteolytic lesions and organ
impairment of liver, spleen, lymph-node and lung, may
occur.15,16 As the BCG vaccination is no longer generally
recommended in many countries, patients should be
checked for exposure to the BCG vaccination, and if
patients have been exposed, adequate antimycobacterial
treatment should be initiated even in the absence of any
clinical manifestations.15e19 We have evaluated T cell
receptor excision circle (TREC) quantification using
neonatal Guthrie cards to detect patients with severe T cell
deficiency who have extremely low TRECs and increased
BCG infection in Taiwan since June 2009.20e22 For neonates
with undetectable TRECs including those with SCIDs,
attenuated vaccination is exhibited until adequate
management rescues the profound T cell defects. In the
case of oral live polio vaccine or upon contact with recently
vaccinated persons, central nervous poliomyelitis-
infections and carditis may occur.23

The suspicion of SCID is always to be considered as
a “pediatric emergency” with the risk of a rapidly fatal
evolution and a higher transplant engraftment rate close
to 95% if an adequate donor is available before 3 months
of age.15,16,24 In half of the SCID patients without genetic
identification, a “classical” SCID-phenotype that contains
a hypoplasia of the lymphatic tissues (lymph nodes,
tonsils, thymic shadow), lymphopenia, hypogammaglobu-
linemia, and recurrent opportunistic infections that are
refractory to treatment and requires further immunolog-
ical investigations until SCID can be excluded.15e22 Around
5% of patients with DiGeorge syndrome have thymic
aplasia present as the SCID-phenotype, termed the
complete form of DiGeorge syndrome, and requires
transplantation from hematopoietic stem cells or
thymus.25,26
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Chronic granulomatous diseases (CGD, gp91phox,
gp22phox, gp47phox, gp67phox)

Patients with CGD with the mutant components of nico-
tinamide dinucleotide phosphate (NADP) oxidase, including
membrane-bound gh91- and p22-phox, and cytoplasmic
p47- and p67-phox, experience inhibited reactive oxygen
species (ROS) production leaving engulfed pathogens
alive.27 Patients with CGD have a broader susceptibility to
multiple pathogens, often presenting as mucocutaneous
infections and pneumonia caused by Staphylococcus
aureus, Candida albicans, and Aspergillus spp.22,28 In
a report of 73 predominantly nonChinese CGD patients with
a focus on mycobacterial infections,29 there were BCG-
induced diseases in 38 patients, tuberculosis in 16, both
tuberculosis and BCG-induced disease in seven, mycobac-
terium species in seven, and environmental or non-
tuberculosis mycobacteria (NTM) in four. Among them, nine
patients were otherwise healthy and had isolated myco-
bacterial diseases, including tuberculosis in six patients
(disseminated in three and pulmonary in three) and BCG-
induced disease in three (two BCGosis and one BCGitis).
Another study with a series of 17 Chinese CGD patients
found pulmonary tuberculosis and BCG-induced disease in
three patients (one local, one regional, and one dissemi-
nated), pulmonary tuberculosis in three, and BCG-induced
disease in four (one local, one regional, one distant, and
one disseminated).30 Furthermore, the Salmonella species
has been found to contribute from 5% to 10% of infecting
organisms in CGD patients in nonChinese countries,31 and
approximately 35% in Chinese patients in Hong Kong.30 From
these observations in areas endemic for mycobacteria and
salmonella, CGD patients may resemble or have over-
lapping infectious pathogens as patients with an isolated
defective IL-12/23-IFN-g circuit, both belonging to
congenital phagocyte defects32 and similarly treated with
antibacterial regimes and IFN-g.

Ectodermal dysplasia with hyper IgM syndromes
(NEMO, IkBa)

CD40 signaling initiates class switch recombination (CSR)
and somatic hypermutation (SHM) to augment the adaptive
immune response.33 CD40 is expressed on B cells, macro-
phages/monocytes and dendritic cells, and a lack of
signaling to such cells results in impaired handling of
opportunistic pathogens including mycobacteria. In prac-
tice, tuberculosis is relatively uncommon, being reported in
only one case in two large series34,35 and occasionally in
case reports.36 Histoplasmosis was reported in one case in
the North American series.35 Disseminated atypical myco-
bacterial or BCG infection has not been reported in patients
with CD40 ligand deficiency. However, atypical mycobac-
terial disease is a relatively common manifestation in
defects of intracellular downstream NFkB signaling,
including NEMO and IkBa mutations.37

Boys with X-linked anhidrotic ectodermal dysplasia
and immunodeficiency have hypomorphic mutations in the
IKBKG gene, which codes for the protein IKK-g part of
a kinase complex involved in releasing NFkB from its
association with the inhibitory complex IkB allowing
translocation to the nucleus.38,39 An overlapping clinical
syndrome with autosomal dominant inheritance causing
ectodermal dysplasia and immunodeficiency is caused by
mutations in NFKBIA encoding IkBa, part of the inhibitory
complex.40 Both of these syndromes are very variable
both in immunological and nonimmunological features,
and an HIGM pattern of immunodeficiency can be seen
with some mutations.41,42 Given that NFkB is involved in
a number of T cell and Toll receptor signaling pathways,
the immunodeficiency is more extensive than simply CSR
and HSM, and therefore prone to a variety of bacterial and
opportunistic infections, more common in mycobacterial
infections.
Hyper IgE recurrent infection syndromes (TYK2)

Almost all patients with HIES suffer from recurrent staph-
ylococcal infections, beginning in infancy and predomi-
nantly involving the skin and lungs.43e48 This situation
contrasts starkly with that in patients with CGD, in which
recurrent staphylococcal infections occur in a wide variety
of organs, including the lungs, lymph nodes, skin, liver,
bones, gastrointestinal tract, kidney, and brain.49 Staphy-
lococcus aureus is the bacterium most frequently isolated
from HIES patients, however Streptococcus pneumoniae,
Haemophilus influenzae, and enteric Gram-negative
bacteria are occasionally isolated from HIES patients
during episodes of infection. Fungal infections including
mucocutaneous candidiasis and pulmonary aspergillosis are
also common in HIES. Eczema usually begins during the
neonatal period, before the onset of atopic dermatitis.
Patients with HIES suffer from atopic dermatitis associated
with extremely high serum IgE levels and eosinophilia, but
are usually free from other allergic manifestations, such as
allergic rhinitis, asthma, urticaria, and anaphylaxis.

Recently, HIES has been classified into two categories,
type 1 and type 2, regardless of the mode of inheritance.
Patients with autosomal dominant STAT3 mutations
belonging to type 1 HIES have abnormalities in multiple
systems of the body, including the skeletal and dental
systems. Autosomal recessive TYK2 deficiency has been
identified as a molecular cause of type 2 HIES based on the
finding that a type 2 HIES patient was susceptible to
intracellular bacterial infection and had a defect in signal
transduction for IL-12 and IFNa.50 TYK2 is one of the
founding members of the Janus kinase family (Jaks),
transducing a signal downstream from a number of
cytokines.51e54 The aforementioned patient with type 2
HIES had a homozygous four-base pair deletion in the
coding region of the TYK2 gene, resulting in a premature
stop codon and the absence of TYK2 protein. This disorder
was named AR-HIES with mycobacterial and viral infections
due to severe defects in response to a number of cytokines,
including type 1 IFN, IL-12, IL-23, IL-10, and IL-6.32,50 In
addition, patients with STAT1 mutations impairing both IFN-
g and INFa/b signaling have been found to suffer from both
mycobacterial disease and disseminated HSV-1 infection.55

The absence of TYK2 resulted in defective IL-12 signaling,
leading to impaired TH1 differentiation and IFN-g produc-
tion and susceptibility to intracellular bacterial infections.
This is consistent with the observation that patients with
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IL-12b and IL-12RB1 deficiencies are susceptible to intra-
cellular mycobacterial infections.2

Narrow predisposition to mycobacterial
diseases

Mendelian Susceptibility to Mycobacteria Disease
(MSMD)

MSMD (MIM 209950)56 is a rare congenital syndrome that was
probably first described in 1951 in an otherwise healthy
child with disseminated disease caused by BCG vaccine.57 It
is defined by severe clinical disease, either disseminated or
localized and recurrent, caused by weakly virulent myco-
bacterial species, such as BCG vaccines and non-
tuberculous, environmental mycobacteria (EM) in
otherwise healthy individuals.2,3,58e60 Understandably,
patients with MSMD are also susceptible to the more viru-
lent species, Mycobacterium tuberculosis.5,61e64 Severe
disease caused by nontyphoidal and, to a lesser extent,
typhoidal Salmonella serotypes is also common, observed in
nearly half of the reported cases, including patients who
did not have any mycobacterial disease before the diag-
nosis of salmonellosis, or even at last follow-up.2,3,65 The
title “Mendelian susceptibility to mycobacteria disease” is
therefore misleading, and it may be more accurate to refer
to the underlying genetic defects, namely inborn errors of
the IL-12/23-IFN-g circuit. Other infectious diseases have
rarely been reported in these patients, and have mostly
involved pathogens phylogenetically (e.g., Nocardia) or
pathologically (e.g., Paracoccidioidomyces) related to
mycobacteria, suggesting that these infections were not
coincidental.

Based on the genetic analysis from a large cohort of 220
MSMD patients with a defective IL-12/23-IFN-g circuit by
Casanova et al,59 the genetic mutations were ranked as
IL12RB1 (40%), IFNRG1 (39%), IL12p40 (9%), Stat-1 (5%),
IFNRG2 (4%), and NEMO (3%). Applying this new concept to
people of Chinese descent living in areas endemic for
mycobacteria and salmonella in mainland China, Hong
Kong, and Taiwan, two more siblings from two unrelated
Hong Kong families were each identified with IL12RB1
Arg285stop and 1791þ2T>G mutations, respectively. In one
family, one died of disseminated BCGosis at around 2 years
of age, while his sibling who did not receive a BCG vacci-
nation died of disseminated mycobacterial tuberculosis at
the age of 6 years. In the other family, one died of
disseminated BCGosis at 1 year of age, while his sibling had
cervical and axillary lymphadenopathy after a BCG vacci-
nation, which was well controlled by antimycobacterial
drugs.66

Using such a genetic approach in Taiwan 3 years ago, the
heterozygous 818del4 dominant partial IFN-g receptor 1
was identified in three of our four patients and was the
hotspot dominant IFNGR1 mutation (approximately 87%
among known dominant IFNGR1 mutations).67 The onset
age of BCG-induced diseases in all of our patients with
partial IFNRG1 mutations was below 1 year, which is lower
than that in a study of nonChinese patients, mainly
including American, Irish, and German patients, whose
mean age was 13.4 years (range 1.5e57 years).4 BCG-
induced disease in these Taiwanese cases initially
occurred in the lymphoadenitis (regional phenotype) and
gradually extended to the skin and bones (distant or
disseminated phenotype). Some nonChinese patients with
the same IFNRG1 mutations were able to resist BCG-
induced diseases after receiving the BCG vaccine.4 The
discrepancy in BCG vaccine infections may vary by BCG
strain type, such as the Pasteur, Glaxo, Copenhagen, Rus-
sia, or Tokyo 172 strains (our BCG strain). Alternatively,
patients with partial IFNRG1 deficiency who did not develop
BCG-induced disease might not have been recognized and
consequently treated as refractory, recurrent, or reactive
mycobacterial infection (tuberculosis or nontuberculosis),
especially in endemic areas such as Taiwan.

In contrast, the homozygous missense mutation of
Arg211Pro in the IL12RB1 gene is loss-of-function and cau-
ses recessive complete IL12RB1 deficiency, unrecognized by
the monoclonal antibody, and without affinity to IL-12.
About half of IL12RB1-deficient patients are infected by
nontyphoid salmonella and may present as isolated and
recurrent salmonella infection.7,68 In an extreme case, six
recurrent episodes of Salmonella enteritidis bacteremia
occurred in a Turkish patient with an Arg175Trp IL12RB1
mutation. It was finally eradicated with one month of qui-
nolone (ciprofloxacin) therapy plus trimethoprim-
sulfamethoxazole prophylaxis after a series of failed
treatments with 7-day cefixime, 10-day ceftriaxone, and
14-day cefotaxime, respectively.69 Aggressive treatment
strategies in our Arg211Pro IL12RB1 patient failed to erad-
icate the salmonella infection, and Salmonella enteritidis D
became localized in the pulmonary parenchyma, causing
necrosis, cavitation, and pneumatocele formation, which
had a poor response to antibiotics and was not even cleared
after surgical drainage. IFN-g finally led to the efficient
eradication of salmonella in this case.

The treatment strategy in IL12RB1 deficiency is similar
to that of partial IFNRG1 deficiency. Stem cell trans-
plantation is not indicated, different from those patients
with complete IFNRG1 deficiency who are obligated to
receive transplantation because they always develop
disseminated BCG-induced diseases, fail to form well-
circumscribed granuloma, and die at an early age despite
IFN-g treatment.70,71 Our IL12RB1-deficient patient did not
develop BCG-induced disease after receiving the BCG
vaccine which seemed to confer resistance to environ-
mental mycobacteria, as noted previously by Fieschi et al.7

This reflects that IL-12 signaling is critical for protective
immunity to salmonella, although not necessarily for
mycobacterium.
X-linked ectodermal dysplasia with hyper IgM
syndromes (NEMO)

Among the IL-12/23-IFN-g pathways, patients with defec-
tive candidates of IFN-gR1, IFN-gR2, IL-12p40, IL-12R-b1,
STAT-1, NEMO and IKBA have increased susceptibility to
mycobacterial infections as well as a broader range of
pathogens in those with STAT-1, NEMO and IKBA mutations.
However, six patients from three unrelated kindreds
with NEMO mutations in the leucine zipper (LZ) domain
of E315A and R319Q were first identified to present as



Table 1 Six patients with NEMO mutations from three unrelated families presenting as X-linked MSMD phenotype.

Patient (ethnics) Infection events in three families with X-linked MSMD-NEMO mutations

P1(French) Receive BCG vaccine. Erosive granulomatous cutaneous MAC infection in face & arm
(13 y, Tx: INH, RIF, EMB, clofazimine, streoptomycin for 2.5 y; well response to IFN-g).
Intermittent mycobacterial infections in the last 10 years.

PII-1 Miliary TB (6 y). Disseminated MAC (40 y, not eradicated). Enterobacter sepsis (48 y).
PIII-7 Disseminated MAC (5 y). Died of motorcycle accident (10 y).
PIII-8 Recurrent H. influenza (6 y). Disseminated abdominal MAC. Ectodermal dysplasia:

conical teeth, hypodonia, hypotrichosis, abnormal hair whorl (14 y, Tx: poor response
despite IFN-g), normal response to polysaccharide antigens.

P2, II-1 (Italian, Serbian) Receive BCG vaccine. Persistent low grade fever, night sweats, cough, cervical &
inguinal lymphoadenopethy, positive PPD (2 y, Tx: INH, RIF for 6 m). Cervical
lymphoadenopethy & prolonged fever, salmonella colitis (3 y). Concial decidual incisors
(7 y).

P3, II-2(German) Not-BCG vaccine, H. influenza b cervical lymphoadenitis (1 y). Fever of unknown origin,
splenomegaly, hypergammaglobulinemia, granulocytosis (9 y). PPD positive, pulmonary
infiltration (10 y, Tx: INH for 3 m, replaced by cefodoxime)

EMB Z ethambutol; IFN-g Z interferon-gamma; INH Z isoniazid; MAC Z mycobacterium avium complex; PPD Z purified protein
derivative; RIF Z rifampicin; TB Z tuberculosis; Tx Z treatment.
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XR-MSMD (Table 1). The mutant proteins were produced in
normal amounts in blood and fibroblastic cells, however the
patients’ monocytes presented with an intrinsic defect in T
cell-dependent IL-12 production, resulting in defective IFN-
g secretion by T cells. IL-12 production was also impaired as
the result of a specific defect in NEMO- and NF-kB/c-Rel-
mediated CD40 signaling after the stimulation of monocytes
and dendritic cells by CD40L-expressing T cells and fibro-
blasts, respectively. However, there were no significant
findings in the CD40-dependent upregulation of cos-
timulatory molecules of the dendritic cells, the prolifera-
tion and immunoglobulin class switch of B cells, and other
NF-kB activators in the patients’ blood and fibroblastic
Table 2 Seven French patients from two unrelated families wi

Patient (birth year) Infection events in two families

P1 (1953) No BCG vaccine, pulmonary TB (1
fever, lymphoadenopathy, hepat
cells, Tx: INH, RIF, EMB, PNA for

P2 (1950) BCGitis, regional axillary adeniti
lymph MAC adenitis (INH, RIF, EM

P3 (1955) BCGitis, regional axillary adeniti
P4 (1974) BCGitis (2 y received), regional

surgery). Intestinal volvulus due
lymphoadenopathy (24 y, TB, IN
surgery, Px: epithelioid granulom

Female carrier 1 (1920) Tuberculous salpingitis and pulm
zoster.

P5 (1969) BCGitis, regional axillary adeniti
Lymphoadenitis (4 y, anti-mycob
abdominal lymphoadenopathy (3

P6 (1969) BCGitis (2 y received), regional
axillary, crural lymphoadenopath

P7 (1974) BCGitis, regional axillary adeniti

EMB Z ethambutol; IFN-g Z interferon-gamma; INH Z isoniazid; M
derivative; Px: pathology; PZA Z pyrazinamide; RIF Z rifampicin; TB
cells.72 The authors first demonstrate the importance of the
T cell- and CD40L-triggered, CD40-, and NEMO/NF-kB/c-
Rel-mediated induction of IL-12 by monocyte-derived cells
for protective immunity to mycobacteria in humans.
X-linked chronic granulomatous diseases
(gp91phox)

The mutant human gene encoding the gp91phox (CYBB)
subunit of the phagocyte NADPH oxidase, causing X-linked
chronic granulomatous disease (CGD), impairs the respira-
tory burst of all types of phagocytes. Patients with CYBB
th CYBB mutations presenting as X-linked MSMD phenotype.

with X-linked MSMD-CYBB mutations

0 y and INH for 10 m). Multiple mediastinal lymph nodes (34 y,
omegaly, fatigue and anorexia, Px: rare epithelioid and giant
23 m).

s (self-limited), local ulcer and fistula (12 y, surgery), cervical
B for 18 m). Ophthalmic zoster (21 y).
s (surgery). Abdominal zoster and self-limit warts (21 y).
axillary adenitis (Px: epithelioid granuloma and giant cells,
to multiple enlarged lymph node (21 y). Left supraclavicular
H, RIF, EMB for 12 m plus IFN-g), cervical adenitis (27 y,
a and giant cells growing from BCG).
onary open cavity TB (29 y, Streptomycin, INH). Intercostal

s, BCGosis (6 m, anti-mycobacterial Tx for 2 y).
acterial Tx, surgery), BCG ititis (10 y), multiple cervical &
8 y, INH, RIF, EMB, PZA over 1 y, partial response).
axillary adenitis self-limit (2 y & 13 y), multiple cervical,
y (29 y, INH, RIF, EMB, ofloxacin).
s (3 m, surgery).

AC Z mycobacterium avium complex; PPD Z purified protein
Z tuberculosis; Tx Z treatment.



Table 3 Three patients increase susceptibility to mycobacterial infections, especially BCG.

Patient (birth year, ethnics) Infection events in families with AR MSMD-IR8 mutation

K108E/female (Irish) Intracranial calcification (in utero). Failure to thrive, marked hepatosplenomegaly, pleural
effusion, ascites, oral candidiasis, discharging BCG scar, suppurative axillary lymphadenitis (10
wk). Monocytopenia (0), anemia (HbZ 4.6), lymphocytosis (125,000/mm3), hypoalbuminemia.
Florid myeloproliferation. Loss IL12 production and poor IFN-g response. Delayed neutrophil
oxidase burst. Rhinovirus deterioration and respiratory failure. Suspicious HLH development
(HLH-2004: corticosteroids, etoposide and cyclosporine). CBHSCT, condition: treosulfan &
fludarabine; GvHD: alemtuzumab, cyclosporine & mycophenolate mofetil (9 m).
Infection events in families with AD MSMD-IR8 mutations.

T80A/male (1970;
Italian Brazil)

Disseminated BCG lymphoadenopathies (15 m, RIF, INH & PZA for 6 m); abdominal
lymphoadenopathies (20 y, RIF, INH & PZA for 6 m); peripheral & abdominal
lymphoadenopathies (30 y, poor response to [RIF, INH & PZA] for 6 m and [ciprofloxacin,
clarithromycin & ethambutol] for 36 m; good response to [amikin, rifabutin, clofazimine,
ofloxacin, cycloserine & ethambutol]).

T80A/female(1996;
Italian Chile)

Left axillary lymphoadenopathy (1 y; surgery). Fever and axillary, cervical, retroperitoneal &
celiac lymphoadenopathies (2 y; RIF, NIH & PZA for 12 m).

CBHSCT Z cord blood hematopoietic stem cell transplantation; EMB Z ethambutol; HLH Z hemophagocytic lymphocystic histiocytosis;
IFN-g Z interferon-gamma; PZA Z pyrazinamide; RIF Z rifampicin.

Active mycobacterial infections in PIDs 755
mutations have an increased susceptibility to various
catalase-positive pathogens infectingmainly respiratory and
mucocutaneous systems. However, two kindreds in other-
wise healthy male adults with T178P (in 3 patients) and
Q231P (in 5 patients) developed unexpectedly X-linked MSMD
syndromes (the clinical features are summarized in Table 2).
These eight patients had previously unknown mutations in
CYBB that resulted in an impaired respiratory burst in
monocyte-derived macrophages, but not in monocytes or
granulocytes. The macrophage-specific functional conse-
quences of the germline mutation resulted from selective
cell-specific impairment in the assembly of the NADPH
oxidase.73,74 This “experiment of nature” indicates that
CYBB is associated with MSMD and demonstrates that respi-
ratory burst in human macrophages is a crucial mechanism
for protective immunity to tuberculous mycobacteria.
Autosomal dominant interferon regulatory factor 8
(IRF8) for dendritic cell immunodeficiency

In 2011, three patients with IRF8 mutations were recog-
nized to have recurrent infections related to the BCG
vaccine. Two Italians with the same autosomal dominant
(AD, heterozygous) mutation of T80A IRF8 were healthy but
had isolated and recurrent BCG infections because of
a selection depletion of CD11cþCD1cþ circulating dendritic
cells. In contrast, one Irish person with an autosomal
recessive (AR, homozygous) mutation of K108E IRF8 had the
SCID-phenotype at 6 weeks, presenting as discharging BCG
scar, suppurative axillary lymphadenitis and oral candidi-
asis (Table 3). An successful unrelated cord blood hema-
topoietic stem cell transplantation restored his complete
lack of circulating monocytes and dendritic cells at 9
months of age. These findings suggest that IRF8 is also
critical for the development of monocytes and dendritic
cells and for antimycobacterial immunity.75
Autoantibodies to interferon g (antiIFN-g Abs)

Although the first cases of immunodeficiency caused by
autoantibodies to interferon g were described in 2004,76,77

Madariaga and coworkers had identified antiinterferon g
autoantibodies in otherwise normal individuals infected
with Mycobacterium tuberculosis in 1998.78 The highest
titers of autoantibodies to interferon g in tuberculous
patients were in those with recent latent tuberculosis
infections, followed by patients with severe active M.
tuberculosis infection. Susceptibility to tuberculous and
NTM infection as well as listeriosis, salmonellosis, histo-
plasmosis, melioidosis, and penicilliosis has been shown in
patients with interferon g receptor deficiency.3

Reviewing the literature regarding patients with antiIFN-
g Abs, 14 HIV-negative adults were reported with severe
opportunistic infections and high titers of neutralizing
autoantibodies to interferon g.76e82 In vitro, antiIFN-g Abs
block downstream mediators of interferon g, including
STAT1 phosphorylation, TNF, and interleukin-12 production,
suggesting that these autoantibodies may interfere with
the natural inflammatory response to infections with
mycobacteria. Clinically, all patients had at least one NTM
infection and five were infected with multiple mycobacte-
rial species. The most common organisms were M. avium
complex (11 infections) followed by rapid-growing myco-
bacteria (six infections). Of the 14 reported cases, 11 were
Asian, suggesting possible genetic associations. Outcomes
ranged from fatal infections to complete recovery.76e82
Conclusion

Patients with SCID including complete DiGeorge
syndrome83,84 have an en bloc absence of IL-12/23 effector
T lymphocyte/NK cells. Patients with X-linked hyper
IgM syndrome (CD40L mutation), CD40 deficiency and



756 W.-I. Lee et al.
immunodeficiency with/without anhidrotic ectodermal
dysplasia (IkBa and NEMO mutation)29,85 could not augment
the CD40 pathway to IL-12/23-IFN-g signaling. Moreover,
patients with CGD and hyper IgE syndrome (HIES) had
insufficient macrophage-producing ROS and defective IL-6
and IL-10 response to kill intracellular mycobacterial
pathogens.27,30,31,49,50 These immunodeficiencies have
a broader susceptibility to multiple pathogens as well as
mycobacterial and/or salmonella infection. However, an
inborn error of the IL-12/23-IFN-g circuit is prone to poorly
virulent mycobacterial and nontyphoid salmonella infec-
tions rather than anything else,10 commonly known as
MSMD.56 X-linked MSMD caused by selectively defective
NEMO and CYBB mutations has been incidentally identified
from clinical observations in the presence of ectodermal
dysplasia and whole exons sequencing in patients with
normal respiratory bursts, respectively.72,74 To predict the
prognosis in BCG-induced infections, we are working on the
AD-IRF8 mutation to evaluate Taiwanese patients with
a benign course in contrast to the AR-IRF8 mutations with
the SCID-phenotype, although ethnic variation may exist.75

We have standardized the functional assessment of these
antiIFN-g Abs and identified some patients who are adult-
onset and have a relatively more persistent MSMD pheno-
type lacking BCG-induced diseases (Lee & Ku submission).

We have already launched the website for the Primary
Immunodeficiency Care And Research (PICAR) Institute
(http://www.cgmh.org.tw/chldhos/intr/c4a80/06index003.
htm) to provide clinical consultation, immune functional
assessment and candidate genetic analysis for timely
management strategies. Based on the clinical course,
“infections with normally harmless tuberculosis-like
bacteria” is one of 10 PIDs warning signs, especially in
adult patients, as well as “recurring infections or infections
requiring prolonged antibiotic therapy” and “infections
with unusual localization or unusual pathogens” in two of
six adult ESID (European Society of ImmunoDeficiencies)
warning signs. Hopefully this will improve the recognition
rate of adult-onset PIDs while elucidating the possible
immune defects in the patients suffering from refractory,
recurrent or unusual mycobacterial infections.
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